Tropical cyclone induced waves

A STATISTICAL CHARACTERIZATION

S. Jullien, L. Maillard, C. Menkes, A. Mouche, M. Lengaigne, S. Neetu

From Holthuijsen et al. 2012

How does the TC-induced wave field evolve with TC intensity and translation velocity?

TC-INDUCED WAVES

Observations

- o Buoys (Young 2006, Esquivel-Trava et al. 2015...)
- o Altimeters (Wright et al. 2001, Young and Vinoth 2013, Hwang 2015, Hwang and Fan 2016, Hwang and Walsh 2016...)
- o SAR (King and Shemdin 1978, Moon et al. 2003...)

Modeling (Doyle 2002, Liu et al. 2007, Fan et al. 2009...)

description of the wave characteristics under TCs

Often based on case studies or on one cyclonic basin And/or used to build parametric description of the H_s^{max}

> Need of a statistical characterization of TC-induced wave field

IMPACT ON AIR-SEA EXCHANGES

$$\tau = \rho_a \overline{u'w'} \qquad \qquad \tau = \rho_a C_d U_{10}^2 = \rho_a u_*^2$$

Roughness parameterization

IMPACT ON AIR-SEA EXCHANGES

$$\tau = \rho_a \overline{u'w'} \qquad \longrightarrow \qquad \tau = \rho_a C_d U_{10}^2 = \rho_a u_*^2$$

IMPACT ON AIR-SEA EXCHANGES

$$\tau = \rho_a \overline{u'w'} \longrightarrow \tau = \rho_a C_d U_{10}^2 = \rho_a u_*^2$$

 $|U_z|$

zÎ

 $C_{\rm d} = \frac{1}{\left[\ln\left(\frac{z}{z_0}\right)\right]}$

Wind Speed, U₁₀ (m/s)

IMPACT ON AIR-SEA EXCHANGES

$$\tau = \rho_a \overline{u'w'} \longrightarrow \tau = \rho_a C_d U_{10}^2 = \rho_a u_*^2$$

IMPACT ON AIR-SEA EXCHANGES

Few observations under extreme winds

Various relations found in the literature, no consensus

Dependency to the cyclone quadrant

How does the TC-induced wave field pattern impact air-sea exchanges?

Objectives of the study

OBJECTIVES

To assess statistically

- The spatial distribution of the wave field under TCs
- o Its potential impact on air-sea exchanges
- $\circ~$ Its dependency on TC parameters (V_max, U_h)

SPECIFICITIES

- All cyclonic basins
- 20-year wave simulation (~2000Tcs)
 Robust statistical results

Methodology

ATMOSPHERIC FORCING

Atmospheric reanalysis ERA5 (1/4°) + parametric vortex (*Willoughby*, 2006) on Best Tracks

WAVE MODEL WaveWatch III global configuration (1/2°)

Methodology

COMPOSITE METHODOLOGY

- Rotating the direction of motion
- Mirroring of Southern Hemisphere frames
- Rescaling on RMW

TC-induced waves characteristics

MEAN WIND FIELD U₁₀ Stronger winds on the right

MEAN H_s

Reduce

fetch

Higher waves on the front right

MEAN WAVE PERIOD T_{Om1} Longest periods on the front

Large standard deviations:
 variability between TCs
 influence of V_{max} and U_h?

Translating cyclone

TC-induced waves characteristics

INFLUENCE OF Vmax AND Uh

- \circ Increasing asymmetry with U_h
- Max winds and waves less co-located for intense TCs
 - Swell goes faster at high intensities
 - Waves submitted to the larger fetch are further from the eyewall

TC-induced directional spreading

WAVE DIRECTIONAL SPREADING PATTERN

σ_{dir}, hurricane Fran (Sept. 5, 1996, 15:00 UTC) From <u>Holthuijsen</u> et al. (2012)

ollowing

wind sea

σ_{dir}, hurricane Fran (Sept. 5, 1996, 15:00 UTC) From Holthuijsen et al. (2012)

From Holthuijsen et al. 2012

wind sea

Summary

TC-INDUCED WAVES SPATIAL PATTERN

Influence of U_h and V_{max}

- \circ ~ Stronger asymmetry with both U_h and V_{max}
- \circ $\:$ Wave spreading strongly modulated by U_h and basin background swell
- o Charnock coefficient pattern very different for weak and strong TCs

ASSETS

- All cyclonic basins
- 20-year simulation (~2000Tcs)
- Realistic TC forcing

LIMITATIONS

Low resolution (1/2°) TCs might be oversized No coupling

Air-sea interactions: let's remember that we are in the limit of both observations and model parameterizations

On-going work: use of spectral observations

 \rightarrow retro-propagation of wave systems to the generation area

On-going work: use of spectral observations

 \rightarrow retro-propagation of wave systems to the generation area

Thank you!

Wave directional spreading

Boreal summer

Climatology of Hs and wave direction

Hs (m)

